Test-size Reduction via Sparse Factor Analysis
نویسندگان
چکیده
In designing educational tests, instructors often have access to a question bank that contains a large number of questions that test knowledge on the concepts underlying a given course. In this setup, a natural way to design tests is to simply ask learners to respond to the entire set of available questions. This approach, however, is clearly not practical since it involves a significant time commitment from both the learner (in taking the test) and the instructor (in grading the test if it cannot be automatically graded). Hence, in this paper, we consider the problem of designing efficient and accurate tests so as to minimize the workload of both the learners and the instructors by substantially reducing the number of questions, or—more colloquially—the test size, while still being able to retrieve accurate concept knowledge estimates. We refer to this test design problem as TeSR, short for Test-size Reduction. We propose two novel algorithms, a non-adaptive and an adaptive variant, for TeSR using an extended version of the SParse Factor Analysis (SPARFA) framework for modeling learner responses to questions. Our new TeSR algorithms finds fast approximate solutions to a combinatorial optimization problem that involves minimizing the uncertainly in assessing a learner’s understanding of concepts. We demonstrate the efficacy of these algorithms using synthetic and real educational data, and we show significant performance improvements over state-of-the-art methods that build upon the popular Rasch model.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملSparse Principal Component Analysis via Regularized Low Rank Matrix Approximation
Principal component analysis (PCA) is a widely used tool for data analysis and dimension reduction in applications throughout science and engineering. However, the principal components (PCs) can sometimes be difficult to interpret, because they are linear combinations of all the original variables. To facilitate interpretation, sparse PCA produces modified PCs with sparse loadings, i.e. loading...
متن کاملPosterior Contraction in Sparse Bayesian Factor Models for Massive Covariance
Sparse Bayesian factor models are routinely implemented for parsimonious dependence modeling and dimensionality reduction in highdimensional applications. We provide theoretical understanding of such Bayesian procedures in terms of posterior convergence rates in inferring high-dimensional covariance matrices where the dimension can be potentially larger than the sample size. Under relevant spar...
متن کاملTest-size Reduction Using Sparse Factor Analysis
Consider a large database of questions that test the knowledge of learners (e.g., students) about a range of different concepts. While the main goal of personalized learning is to obtain accurate estimates of each learner’s concept understanding, it is additionally desirable to reduce the number of questions to minimize each learner’s workload. In this paper, we propose a novel method to extrac...
متن کاملOn Support Sizes of Restricted Isometry Constants
A generic tool for analyzing sparse approximation algorithms is the restricted isometry property (RIP) introduced by Candès and Tao. For qualitative comparison of sufficient conditions derived from an RIP analysis, the support size of the RIP constants is generally reduced as much as possible with the goal of achieving a support size of twice the sparsity of the target signal. Using a quantitat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014